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NONLINEAR DYNAMICS OF A DIFFUSING INTERFACE

Walter M.B. Duval

National Aeronautics and Space Administration
Glenn Research Center

Cleveland, Ohio 44135

Excitation of two miscible viscous liquids inside a bounded enclosure in a microgravity

environment has shown the evolution of quasi-stationary waves of various modes for a range of parameters.

We examine computationally the nonlinear dynamics of the system as the interface break-up and bifurcates

to resonance structures typified by the Rayleigh-Taylor instability mechanism. Results show that when the

mean steady field is much smaller than the amplitude of the sinusoidal excitation, the system behaves
linearly, and growth of quasi-stationary waves occurs through the Kelvin-Helmholtz instability mechanism.

However, as the amplitude of excitation increases, nonlinearity occurs through subharmonic bifurcation

prior to broadband chaos.

Introduction

We examine computationally the nonlinear

dynamics of flow fields, which destabilizes an initially
stable sharp interface between two miscible liquids inside

a cavity. The two fluids are subjected to oscillatory

vibration in a microgravity environment, and serve as a
model to understand effects of g-jitter. The destability of

the interface between the two miscible liquids caused by

bifurcation of the flow field serves as a model problem to

study transport phenomena in a wide range of
microgravity applications such as crystal growth of

acousto-optic optoelectronic materials, protein and

solution crystal growth. We consider a parametric space
of relevance to microgravity applications.

The microgravity environment is particular

useful for transport phenomena involving

nonhomogeneous bulk fluids due to minimization of
buoyancy induced flows. However, vibration effects,

which cause g-jitter, can serve as a source to induce
convective flows. In order to quantify effects of g-jitter

we designed an experiment to study effects of prescribed
sinusoidal forcing on the stability of two miscible liquids 1.

The experimental results show that for the frequency band

of interest (0.1 - 10 Hz) and disturbance amplitude (0.2-

20 milli-g) the interface can indeed become unstable and

generate quasi-stationary waves up to four modes. The
instability of the interface was shown to cause by Kelvin-
Helrnholtz (K-H) instability z. The flow field destabilizes

to an oscillating parallel shear flow and causes the
interface to evolve like a vortex sheet. The parametric

space for the experiment ranged from Stokes-Reynolds
number (Res) of 0.002 to 0.5. In this computational study,
we extend Res to 43.

We address the dynamical state of the flow field

to gain insight on the predictability of the system. Of
interest is the number of modes that can be generated for a

quasi-stationary wave prior to its breakup. We examine

the characteristic response of the system to various

amplitude and frequency of excitation. We show that for
Res O(.1) the flow field responds isochronously to the

input excitation, thus generates a limit cycle. The number

of modes generated at the interface is correlated with the

magnitude of Res. With increasing Res, the system
becomes nonlinear and responds with harmonics of the

input frequency. A subharmonic bifurcation occurs,
similar to a two torus bifurcation, prior to broadband

chaos. In the neighborhood of the chaotic state, there is

breakup of the interface. The mechanism of the breakup is

due to Rayleigh-Taylor instability.

In the following, we consider an infinite

dimensional system as a dynamical model. We analyze the

dynamical state of the system from its time history,
pseudo and phase space trajectories, and power spectrum.

The dynamical state of the system is correlated with the
local bifurcation of the interface.

Formulation

The problem of interest is shown in Figure 1, two

miscible liquids with distinct density meet initially at a
planar interface. This realization has been shown to be

possible in a microgravity environment. The two fluids are

subjected to a body force parallel to its interface. The

body force

g(t) = ngo + mgo (cos eot +0) (1)
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consistsof thestead),backgroundDCcomponent(ngo),
the excitationAC componentwith amplitude(mgo),
circularfrequencyo_, and phase angle 0.

The dynamical model of the problem consists of

the Navier-Stokes equations coupled with species
continuity. For a square cavity (H=L) with characteristic

length, time and velocity scales selected as,

Ap
L c=,l_/co , T=l/oa, U c -

mgo

p 09
(2)

The dimensionless incompressible Boussinesq
equations in vorticity-stream function relationship can be
expressed as,

a2_ 32_

ax'- _0--S =-_" (3)

a;l fa2; a2;]at uax +

(aR +cos(t +O)) _-_x"

(4)

aC* _-Re, 3C* O C* ]
at u--_-x+ v-_-y_=

i Fa- c" a- c*l
 cL +vTj ..........(,): .

The velocity components and vorticity are defined as,

be #_av au
u=a¢, v=- a----x-' ax ay (6)

The boundary conditions are no-slip along the wall
boundaries (1-')

ITe/_=0 on F (7)

and the condition of impermeability normal (K) to the
boundary,

VC*.//=0on F (8)

Since we are considering an initial value problem, the

concentration field has prescribed values of 1 and 0 for

the left and right fluids respectively, with a value of 0.5
for the interface,

'iC'(x,y,z,0)= 5

O< x< L/2

x=L/2

L/2<x<L

(9)

The concentration field equation is normalized with C* =

(C-Cjs)/(CA-CB). The parametric space (A) of the above
set of equations

A = A(Res, AR, Sc, O) (10)

consists of the Stokes-Reynolds (Res) number, the

amplitude ratio (AR), the Schmidt number (Sc), and the

phase angle 0 defined as,

_ Apmg o V

Re, _V1/2o93/2 , AR = n, Sc =-- (11)
m DAB

For the parameters of interest, the Schmidt

number is kept constant as well as the phase angle. Thus
the flow field as well as the dynamical evolution of the

interface can be expressed as a co-dimension two
problem,

V=_7(x,y,t;Res, AR) (12)

We used finite difference to solve the coupled set
of equations (3-5). Since we are interested in the

asymptotic dynamics of the system, we used an explicit

scheme with a third order Adams-Bashforth technique for

time discretization. The Flux Corrected Transport

algorithm is used to resolve the sharp discontinuity of the
interface 3. A 90 × 90 grid size is used for spatial

resolution and found to be adequate over the parametric

range of interest. We mostly varied Res for our parametric
studies, however, we found that the results are sensitive to

the magnitude of AR.

Discussion antl Computat|rnal Resulfs

The parametric space considered consists of

variation of the amplitude of excitation (mgo), input

frequency (_o), while keeping the background DC
acceleration (ngo=10"rgo, go=980cm/sec 2) and phase angle

(0 =0) fixed. The geometric length scales (H=L=5cm) and

properties of the fluid (Sc=1079) are fixed. The range of
parameters considered is shown in Table 1.
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Table1-RangeofParameters,ngo= 10-6go

f
(H0
0.5

0.5

0.5

Res

0.5

0.1908

0.2386

0.2863

AR

2.5x10 -4

0.7158

1.25x10.40.5 0.3818

0.5 0.4772 1.0×10.4

6.67x10 -5

0.5 0.95

0.33 1.78

0.25 2.69

2.850.5

5.0 10
2.50x10 -5

2.50x10 -5

1.67x10 -5

1.25x1040.5 3.80
0.5 4.75 1.0xl0 5

0.5 5.70 8.33x10 -s

6.67

7.60

8.55

9.5

0.5

0.5

0.5

0.5

0.5

0.5

10.45

42.75

7.14x10 6

6.25x10 6

5.56 xl 0 .6

5.0×10 -6

4.55 xl 0 -6

1.11×10 .6

The metric used to quantify the response of the interface

to various excitation input is its wavelength 0Q which is a
function of Res and AR,

k = k(Res, AR) (13)

Even the co-dimension two bifurcation problem is a

formidable computational task because the system loses

and gains stability over a dense parametric set similar to
the logistic map model 4. Even though all the fine details of

the bifurcation sequence are not computed, the range of

parameters in Table 1 gives a broad glimpse on typical
scenarios. Over most of the parametric space, we varied

mgo, a narrow range of o was considered.

Effect of Flow Field on Dynamics of Interface

In order to correlate the dynamical equilibrium of

the flow field in phase space with the interface response,

we show in Figure 2 the local bifurcation of the quasi-
stationary wave as a function of Res. The wavelength of

the q-s wave decreases, or the number of modes increases,

as Res increases. Breakup of the interface occurs in the

neighborhood of Res=8.55 for which q-s waves no longer
exist. The number of modes is dictated by the number of

bends in the interface, an S shape has two modes.
Transition from two to four mode q-s wave occurs for

Res>0.29. Typical interface response of four mode q-s
wave is shown for Res--0.72; the four mode response

extends up to Res= 1.78. The mode number at the interface
is sensitive to the threshold of AR, for example at
Res=0.34 and AR=5 × 10 .5 a four mode structure can be

suppressed by increasing AR to 1.25 × 104, only two
modes result. There is a transition from 4 to 8 primary

modes for Res=2.85; note 3 secondary modes occur with

very small wavelength at the top and bottom boundaries.
This bifurcation occurs in the neighborhood of Res=1.9.

The mechanism which generates q-s waves for

Res 0(2.85) is basically the Kelvin-Helmholtz (K-H)

instability. A row of parallel vortices is generated along
the interface. These vortices serve as rotors, which stretch

and fold the interface. As Res increases, Res O(4.75),

there occur secondary waves riding on the primary modes
on the interface. The K-H instability mechanism manifest

itself perpendicular to the interface to form vortex rows.
The interface no longer forms q-s waves, rather stretches

and folds continuously to generate roll-up structures as
typified by the Rayleigh-Taylor instability 5. Only the
initial state of the interface structure is shown, the flow

field becomes quite complex with vortices occupying the

entire cavity. The state of the flow field is chaotic as will
later be shown.

The wavelength (_) of the interface, up to the

breakup, decreases asymptotically as Res increases,

shown in Figure 3. The wavelength is estimated from its
average value at the center of the cavity. The dependence

of ?_on Res follows a power law

A _ CRes -" (14)

C is a constant and n is less than I; the decrease in

wavelength is similar to a turbulent cascade. In contrast

the maximum magnitude of the velocity Y[mar ' shown in

Figure 4, increases with Res and also follows a power law

in which n is greater than 1,

V,,_ o_ C Res " (I5)

The functional relationship of?, and Vm_ on Res illustrate

the global trends. Much more details would be needed to
show the bifurcation details as found for example in the

logistic map.

Dyamical State of the Flow Field

We characterize the dynamical state of the system

from the time history of the asymptotic dynamics of the
fl0w field. The limit set of the time history is obtained

NASAfFM--2001-210956 3



fromboththepseudoandphasespacetrajectories.Fora
givenfrequencyandamplitudeofexcitation,theresponse
of thesystemis obtainedfromitspowerspectrum.The
estimatedpowerspectrumfor thev componentof the
velocityfieldiscalculatedfrom,

_,( f )= V( t )e-i2nY' dt (16)

in which R is the finite duration of the time interval. The

smooth spectral estimate Pv(f ) is obtained using a

Hanning x_"indow for filtering, and a convolution relation
as,

Pv(f )=W_(f )*_,(f ) (17)

Wd f ) is the spectral window for filtering. The power

spectrum is estimated using the Cooley-Tukey algorithm,
which employs the use of Fast Fourier Transforms 6'7. The

dynamics of the flow field is evaluated from a

representative point of the flow field. For each data set we

kept 10,000 points.

We now analyze the dynamical state of the flow
field, which generates the q-s waves shown in Figure 2.

For low Res=0.19 which yields a two-mode q-s wave, the

flow field oscillate isochronously, see Figure 5a, with the
input frequency f=0.5 Hz. The power spectrum shows that

the v component of the flow field responds with a

frequency of 0.5 Hz, the same scenario was found for the
u component. The pseudo-phase space trajectory, found

by lagging the velocity with a constant k, of the v

component indicates that the dynamics approach a limit

cycle attractor for the selected location (0.33, 0.56) in the
flow field. This indicates that for the given parametric

input to the system, its future behavior will always tend to

oscillate in phase with the input frequency.

When nonlinearity becomes important, Figure 5b

Res=0.48, harmonics of the fundamental frequency
appear. While the u component of the velocity field is

periodic, as shown above, the v component of the velocity

shows a decrease in amplitude with every oscillation. The

combination of the signal is shown in the phase space

trajectory, which shows a nonchaotic attractor. This
attractor is a smooth surface with the attributes of

stretching and folding in phase-space.

With increasing nonlinearity in the system, Figure 6

Res=0.72, the flow field responds with a modulated

amplitude signal in the v component. Such modulation

gives rise to nonchaotic attractors as evidence from the

pseudo-phase space trajectory of v(t + k); this attractor is

similar to the Rossler funnel s. The flow field responds

with harmonics (1.0, 1.5 Hz) of the fundamental input

frequency of 0.5 Hz; the 1.5 Hz component is very minute

and is barely discernible. The gradual decrease in the
amplitude of-the u component of the Velbcity field gives

rise to the dense limit cycle attractor. The combination of

the signal of the u and v component is shown in the (u, v)

phase-space trajectory, which shows the evolution of a
nonchaotic attractor. It is known that strange nonchaotic
atttractors exist for quasi-periodically forced systems 9"_°'_l

however they are not smooth manifolds in phase space.
Even though the attractors shown in Figure 6 are

nonchaotic, they are not strange. This study gives insight

into parametric regions for which an infinite-dimensional

system may display these so-called strange nonchaotic
attractors.

A rational subharmonic bifurcation is shown in

Figure 7. When Res is increased to 1.78 for an input

frequency of 0.33 Hz, both the u and v component of the

velocity field show harmonic response of the fundamental
frequency. A complex nonchaotic attractor illustrating

stretching and folding arises in phase-space. A

subharmonic bifurcation occurred in the neighborhood of
Res=2.69, AR = 2.5 x 10 -5. In contrast to the above cases,

both the u and v components show response at one-half

the input frequency of 0.25 Hz as well as higher

harmonics. The response frequency of the system is
phase-locked to the input frequency due to the rational

relationship of the frequency ratio. Note that a

subharmonic attractor is generated in phase space with a
contraction of volume, since the system is dissipative; this

reduces the complexity of the attractor in comparison to

the lower values of Res. The amplitude ratio AR plays a

significant role in the bifurcation sequence, for the same
Res value of 2.69 if AR increases to 1.7 x 10 -5 then the

subharmonic bifurcation dissapears, only harmonics of the
fundamental frequency occurs.

The dynamics of the system for which it

transitions from q-s waves to tendril structures and
breakup is shown in Figure 8. Corresponding to the tendril

structure, Res=4.75, is an irrational frequency component

of the fundamental input frequency shown in the power
spectrum. Similar to Res=2.69, there is a subharmonic

attractor with contraction of volume in phase space. This

corresponds to the two-torus bifurcation as proposed by
Newhouse, Ruelle, and Takens 1-_.The mechanism of K-H

instability which causes secondary waves on the interface

gives rise to the complexity of the flow field which

generates these waves. In the neighborhood of the breakup
region, Res=7.6, there is a resulting broadband power

spectrum distribution which shows that the system

responds to all the frequency components within the

interval of 1.0 Hz. Since the dynamics of the system

NASA/TM--2001-210956 4



changesafterbreakup,wepartitionedthesignalof thev
componentinto two intervals.Contractionof volume

occurs in phase space for the first interval. The second
interval from 160 to 400 secs shows the asymptotic

dynamics of the system which yields a chaotic attractor.

This attractor has the attributes of folding and stretching

which typifies unpredictability. The results for Res in the
interval of 7.6 to 42.75 show that there is a sequence of

window for which the system gains stability to become

periodic and loses stability to become chaotic similar to

the logistic map.

Summary and Conclusions

We considered the nonlinear dynamics of flow

fields, which destabilizes an interface through the Kelvin-

Helmholtz instability mechanism to cause quasi-stationary

waves. The wavelength decreases asymptotically as Res
increases up to the breakup region; the decrease in

wavelength is similar to a turbulent cascade). We show

that when the system becomes nonlinear there is a
transition from two to four mode q-s waves which gives
rise to a host of nonchaotic attractors due to harmonics of

the fundamental frequency in the response signal of the
velocity component. Bifurcation of the system from q-s
waves to tendril structures introduces a rational

subharmonic bifurcation. Chaos occurs through an
irrational subharmonic bifurcation, which corresponds to a

two-torus bifurcation; the interface breaks up and the

Raleigh-Taylor type of instability is manifested. Though

Res was not varied continuously to capture all the
bifurcation details, the subset of the parametric space

considered lead insight into the dynamical behavior of the

system.
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